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Abstract

Fast Radio Bursts (FRBs) are bursts of radio emission on the millisecond scale whose origins

are currently unknown. Out of the possible theories, magnetars are often associated with

FRB sources, but it is still unknown what overall fraction of FRBs are ultimately generated

by magnetars. FRBs are similar to pulses from pulsars, but do not repeat so consistently—

about 4% of FRB sources are known to repeat, but the fast majority have not been found to

repeat at all. These discrepancies between FRB sources make FRBs a largely undiscovered

frontier, with lots of progress made in recent years with more continuing to be made moving

forward. In a previous paper, we successfully detected two FRBs from the same source using

data from the Five-hundred-meter Aperture Space Telescope (FAST). Now, we continue our

research by expanding our search to attempt to detect additional FRBs by broadening the

search window while also performing deeper analysis of the two bursts we previously discov-

ered. In this paper, we were unable to find additional bursts by broadening our detection

timing window. We did successfully extract our bursts into Python, remove additional back-

ground noise and man-made Radio Frequency Interference (RFI), and analyze our FRBs’

Stokes parameters to find the polarization and Rotation Measure (RM) of the bursts. We

also estimated the burst rate (R ≈ (0.55± 0.30) bursts hr−1) for the previous target which

we have detections for. These results allow us to better understand the FRBs we detected

as well as the source they came from, as the RM nearly doubled between the two detections

(-268.123 ± 2.534 rad m−2 for the first and -531.638 ± 1.186 rad m−2) that were ∼ 3 months

apart, indicating that the target is in a highly magneto-active environment. In the future, we

could continue to search for bursts in additional sources with FAST then use our established

process to analyze them as well.

This paper represents my work in accordance with University regulations.

/s/ Xander Jenkin
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1 Introduction

1.1 What are Fast Radio Bursts (FRBs)?

Fast Radio Bursts (FRBs) are short, broadband radio emission on the millisecond scale

which originate from unknown sources that are usually extragalactic (though recent

discoveries have been made within our galaxy). FRBs currently have largely unknown

origins, and while many FRB sources are known to repeat, the majority do not, making the

mechanics behind how FRBs occur remain a mystery at the current time. Pulsar pulses are

very similar to FRBs, though repeating FRB sources do not repeat nearly as consistently

as pulsars, and FRBs have flux densities significantly larger (∼ 1010 ×) on a much smaller

millisecond window with vastly different spectra [Cordes & Chatterjee(2019)].

From 2019 to 2022, the number of confirmed unique FRB sources went from around 60 to

over 600, with that number consistently increasing each year as more FRBs are

detected [Petroff et al.(2022)Petroff, Hessels, & Lorimer]. Only about ∼ 4% of these

sources are known repeaters, but all of our current non-repeating FRB sources are only

labelled such because we have not detected another FRB after an initial detection. In

theory, all non-repeating FRB sources could be potentially repeating sources that are

unconfirmed, further motivating research into the unknown origins of FRBs and the full

nature of FRB sources.

1.2 FRB Origins

Many FRBs have been localized to areas associating them with magnetars (young, highly

magnetized neutron stars that are X-ray active [Kaspi & Beloborodov(2017)]), but overall

we still do not know exactly where they come from, and previous assumptions such as

FRBs being only extragalactic have been recently disproven. There is still plenty of room

for our ideas of their origins to change as we learn more and analyze more bursts from
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repeating and non-repeating FRB sources.

2 Data Selection

2.1 FAST and CHIME Targets

The data we used was collected from the Five-hundred-meter Aperture Spherical Telescope

(FAST) in Guizhou, China, which is the largest single-dish telescope ever made. FAST has

unprecedented sensitivity which can resolve faint radio bursts, so it is a great instrument to

use to check known FRB sources for new bursts (both to discover more bursts from

repeating sources and to possibly confirm a non-repeating source as a repeater).

The data collected from FAST was guided by targets that were FRB sources detected from

the Canadian Hydrogen Intensity Mapping Experiment (CHIME) radio telescope. This

was a broader survey with much less sensitive instruments, so the goal of using FAST was

to take known FRB Targets from CHIME and examine them in hopes of finding more

FRBs that could not be previously detected.

Our FAST survey spanned across 12 targets, where targets 1-7 are known non-repeating

FRB sources and targets 8-12 are know repeating FRB sources. More information and

target parameters can be found in Appendix A.4.

3 Previous Burst Search

We will now be briefly summarizing the results of our previous paper (the Junior Paper

submitted for Fall 2023)—where we successfully identified two new FRBs from one of our

12 FRB targets—before moving on to what was done during this new portion of the

project.
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3.1 Our Choice of DM and De-Dispersion

The Dispersion Measure (DM) is the column density (in pc cm−3) of dispersion due to the

interstellar medium integrated over all electrons along the distance d from the observer to

the source [Cordes & Chatterjee(2019)].

DM ≡
∫ d

0

nedl (1)

The time delay of FRBs as they arrive varies inversely with frequency, resulting in the

signal becoming ‘dispersed’ across frequency over time. DM is the leading term in the time

delay, followed by the Faraday Rotation Measure (RM), and the Emission Measure (EM),

which each scale to an additional power of ν−n, making each subsequent term less

significant in affecting the time delay.

t(ν) = 4.15ms

(
DM

ν2

)
± 28.6ps

(
RM

ν3

)
+ 0.251ps

(
EM

ν4

)
(2)

where

RM ≡
∫

neB||ds , EM ≡
∫

n2
eds (3)

The RM has units of rad m−2 and the EM has units of pc cm−6.

This means that incoming FRBs must be ‘de-dispersed’ to account for this time delay

(where each frequency is subsequently shifted according to the FRB source’s DM).

Previously, we only accounted for the DM term in the time delay, which is good enough

when initially searching for bursts. Later, we will discuss the RM in the next term when we

more closely analyze our previously discovered bursts.
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3.2 Radio Frequency Interference (RFI)

Radio Frequency Interference is often difficult to fully detect and even more difficult to

remove (especially before we know where the bursts are and what they look like). The

challenge of detecting new FRBs is largely distinguishing between real bursts and

man-made RFI. We made various attempts to remove RFI in software using PRESTO

(PulsaR Exploration and Search TOolkit) which has functions for FRBs in addition to

Pulsar detection tools [Amiri et al.(2020)Amiri, Andersen, Bandura, & The CHIME/FRB

Collaboration*].

3.3 Searching through the Bursts

Still, despite our efforts in software, the majority of single pulse detections (which are

ideally bursts), will just be RFI. Our general strategy was to look through the most

prominent bursts and look for prominent (> 10σ) Gaussian-shaped peaks with a vertical

set of marks that follow the structure of the burst across frequency and a smooth diagonal

‘ribbon’ across DM. More details can be found in Appendix A.1; we are keeping these

sections on previous steps brief, as they are much more detailed in the previous paper, and

we would like to quickly move on to what was done for the new portion of this project.

3.4 Previous Results

Previously, we scanned 5 out of the 12 targets and identified two FRBs from the known

repeater Target 11. Both exhibit a prominent Gaussian-like shape, with clear vertical

marks along the burst in frequency and a bright ‘ribbon’ across DM just as we expect.
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Burst # Target Date Time (UT) Signal/Noise (σ) Peak Flux Fluency

1 11 2021-10-20 03:12:10.824 22.38 0.034 Jy 0.27 Jy ms

2 11 2022-01-08 22:28:02.530 31.33 0.047 Jy 0.38 Jy ms

Table 1: List of found bursts from Target 11 with locations, times, and parameters. Peak
Flux (∼ 0.0015σ Jy) and Fluency (∼ 0.012σ Jy ms) are statistical estimates given the average
results of FAST (not directly measured) which can have up to an order of magnitude of
undertainty).

We ended this project successfully having found FRBs, and our next steps were to continue

searching for new bursts in the targets, constrain the rate of Target 11 given the two bursts

we found, and to more closely analyze the structure of the bursts to examine their

polarizations and RMs.

Figure 1: First and second bursts found from Target 11
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Target Scanned DM Repeating? Hours Scanned Bursts Found
2 111.6 Not yet repeating 0.832 0
3 182.7 Not yet repeating 0.788 0
4 127.7 Not yet repeating 0.299 0
11 221.6 Repeater 5.503 2
12 287.1 Repeater 0.834 0

Table 2: Results for all the targets scanned for bursts.

4 Broadening the Search

Now, we will begin with what was newly done for this paper, beginning with our first step

after the end of our previous paper, which is to broaden our search using a computationally

inexpensive method to quickly check for more bursts.

4.1 Detection Timing Window

Previously, when we searched for single pulses in PRESTO we had only searched for peaks

within a sub-millisecond window. We only found two FRBs across the targets, and so a

quick way to check for more is to increase the maximum peak window size. This timing is

not the full width at half maximum (FWHM) of the burst, which for FRBs is usually on the

scale of a few milliseconds. If that were the case, our sub-millisecond window would have

been far too short and neither of our FRBs would have been found. Instead, this is only

the window of the very top of the burst and how long it maintains values around its peak.

Increasing this window will also likely increase the amount of RFI that gets marked as

single pulses, so it’s not the best thing to do for an initial FRB search; however, since we

previously identified bursts already, this can be a method to try and find bursts that we

may have otherwise missed.

After completing all of the previous steps in PRESTO, this can be done by using the -m or

--maxwidth flag when running single pulse search.py and setting the flag to whatever

6



value you want (in milliseconds) instead of the default sub-millisecond window. Because

this is only changing the maximum window, you will still see all of the previous detections

at lower windows—thus, any bursts we have already found will still be there. We are still

primarily looking for very significant single pulses with a > 10σ Signal/Noise ratio, but

when increasing the window size like this, we are only interested in any new single pulse

detections that are comparable to previously found bursts and are much higher and

distinct from previously detected single pulses that were discarded as RFI.

Searching the data for single pulses in PRESTO with variable window:

single_pulse_search.py -b Lband_rfifind.mask_DMXXX.XX.dat -m 10

where 10 should be replaced with your window (ms)1.

This makes the process of manually looking through the detections easier, as the vast

majority of new detections (which there will be many of) from the larger window won’t be

very significant and can be discarded as RFI.

4.2 Larger Window Results

We increased the maximum window flag -m 1ms, 10ms, 100ms, and 1000ms and re-ran

single pulse search.py for our Target 11 surveys to see if we as well as the other

targets. Realistically, we might not need to test it at 100ms and beyond, as anything larger

than that likely won’t resemble a single pulse or burst anyways. However, we did this

anyway since it is quick and we wanted to test a wide range of windows to see if there are

any significant new detections (full table of results in Appendix A.5).

After doing this, we did see an increase in total overall single pulse detections with

moderate significance (> 5σ) for all sources scanned (as expected) when raising the

1Fortunately, this single pulse search for peaks occurs after the de-dispersion and RFI masking in
PRESTO, so we can manually change the window timing for the last step without re-running all of the
previous code. For Target 11 alone, those prior steps take over 30 hours to run, so this saves us a significant
amount of time and makes testing different timing windows fast and easy.
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maximum window to 1ms, but we did not see this change when raising it further to 10ms,

100ms, or 1000ms. This confirms the idea that raising the window will increase overall

detections but only to the point where they still resemble pulses detectable by the software.

When filtering these by Signal/Noise ratios > 10σ, we found that there are no new single

pulse detections after raising the maximum window in the majority of the sources. This

again confirms our suspicion that most of the new detections from the larger window won’t

be significant enough to possibly be FRBs. Only two new single pulse detections > 10σ

were found after increasing the maximum window to 1ms: one from our Target 2 survey

(17.53σ) and one from our first Target 11 survey (13.85σ). Both of these could be potential

candidates, and they could possibly be evidence of Target 11 having a third burst during

this observing duration and Target 2 (thought to be a non-repeating FRB source)

repeating. Our next step is to visually inspect them to see if they exhibit the properties of

FRBs (with the same process and criteria as done for the two Target 11 bursts we

discovered previously).

Figure 2: New Single Pulse detections found in Target 2 and Target 11
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Plotting both of these detections (Fig. 2) just as we did before, neither appear to be single

Gaussian-shaped pulses with vertical marks across frequency when de-dispersed and a

single ‘ribbon’ across DM. Instead, they appear to be sinusoidal signals that exhibit odd,

repeating bands that vary across time even after de-dispersion. These are clearly not FRBs

and likely some sort of RFI, and were only detected because they have broader peaks that

were picked up when we increased the width of the detection window.

Regardless, this was not a long process compared to all of the combined steps when we

previously searched for bursts, and it could have potentially yielded additional FRBs, so it

was a valuable step to take that made sense when trying to expand this project beyond the

results of my previous paper.

5 Rate Estimation

5.1 Poisson Statistics

The Poisson distribution is a probability distribution that can be used to model the

probability of events independent of the time elapsed since previous events. The

probability of k events occurring assuming Poisson statistics is:

P (of k events) ≡ λke−λ

k!
(4)

where λ is the expected number of events [Yates(2005)].

If you want to express the probability of k events occurring in a time interval t assuming a

rate of r events per t, you can rewrite this as:

λ ≡ rt, P (k events in time t) =
(rt)ke−rt

k!
(5)
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5.2 Why Use Poisson Statistics?

Poisson statistics assume independence between events, and FRB occurrences are generally

thought to be not independent. Similar to their origins, the actual probability distribution

representative of FRBs is unknown, but we know that they likely do not exactly follow

Poisson statistics [Lawrence et al.(2017)Lawrence, Vander Wiel, Law, Burke Spolaor, &

Bower]. This method of using Poisson statistics for FRB detections does NOT predict

when future events will occur and how many we expect to occur. Instead, this process is

used to compare the rates between different observations to guide the efficiency of the

instruments for calibration.

It is informative for those doing instrumentation to analyze the rates of various

observations conducted using their instrument, and it is also informative for those looking

for bursts to compare their rates with others using the same instrument. Thus, we will now

compute the rate based on our previous results and compare it to results from others

searching for FRBs with FAST.

5.3 General Poisson Rate Calculation

Based on Eq. 5, we can very easily determine the probability of seeing k events if we know

the rate r and time t. However, reversing this and finding the rate and time for a given k

and probability is very difficult. Analytically, we cannot solve for a single solution. There

are, in fact, multiple solutions for λ = rt, as there exist multiple possible Poisson

distributions which can have the same probability for a particular value of k.

This makes things challenging, so our practical strategy for calculating this rate is to

compute many different Poisson distributions and find which R result in desired

probabilities for a given k.
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5.4 How to Calculate Rates for our FRBs

If we want to know the rate R of FRBs coming from a repeating FRB source, we can use

our total observing time T , number of FRBs detected during that time k, and the target

probability to have seen k events. In this case, it isn’t useful for us to use the probability of

observing exactly k events; instead, we want to know the probabilities of seeing at most or

at least k events, which involves summing the area under the Poisson distribution before or

after k.

To estimate upper and lower bounds for our rate R, we should have upper and lower

bounds for how likely it is to see at least or at most k events. If these bounds are

symmetric (i.e. upper bound + lower bound = 1) we can say that the probability to see at

least the upper bound is the same as the probability to see at most the lower bound (and

vice versa), so the choices of if we assume at most or at least k events (whether we

integrate from the left or the right) are equivalent.

As previously mentioned, to estimate R for a given k, we have to test many different

possible Poisson distributions. Now that we are trying to integrate to k and sum to target

upper and lower bound probabilities, we need to generate and integrate across many, many

Poisson distributions proportional to how precise we want our R estimates—which will

have upper and lower estimate values. We choose to simulate this in Python by generating

many distributions and checking for which R values have total probabilities integrated

around k which are closest to our bounds.

5.5 Numerical Estimation

Since we need to find the area under the Poisson distribution about k, we need to be able

to continuously integrate across it. The Poisson distribution is an inherently discrete

probability distribution that is specifically defined for an integer number of events k. This

makes sense in terms of not being able to see 2.5 FRB detections, but is not convenient
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when trying to integrate accurately between k events.

This discreteness restriction lies in the factorial of Eq. 5, but fortunately we can use the

‘gamma function’ Γ(k),

Γ(n) = (n+ 1)!, n ∈ Z > 0, Γ(x) ≡
∫ ∞

0

tx−1e−tdt, x ∈ R (6)

where we can equate it to the factorial while also defining it for non-integer values of k,

P (k events in time t) =
(rt)ke−rt

Γ(k − 1)
(7)

making Eq. 5 into a continuous function which we can now integrate over numerically.

In Python, we can use scipy.special.factorial, which uses the gamma function for

non-integer values but not values < 0, which is perfect for estimating a continuous Poisson

distribution. This does partially contribute to the erratic behavior of our Poisson

estimation near 0 later on, but for the rest of the integration, this works incredibly well to

create a smooth-appearing Poisson distribution estimate.

5.5.1 Trapezoidal Integration

Even though we now have a continuous probability distribution to integrate over, because

we cannot analytically solve for R given k, the most practical way to do this for our

purposes is to numerically integrate to our desired precision for R. The fact that the upper

and lower R we find is not critical for any of the other parts of our results but is instead a

valuable metric to compute alongside them further motivates this choice.

The continuous integral over P (x) can be trapezoidally approximated as

∫
P (k)dk ≈

N∑
i

P (ki−1) + P (ki)

2
∆ki ≡ trapz[P (k)] (8)
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where ki is the set of k values we integrate over and ∆ki is proportional to the width of

how finely we integrate.

We can take this function and integrate over it many times testing different values of R for

a given k in Python by looping over np.trapz() and outputting the R values whose

distributions integrated closest to the inputted lower and upper (1− lower) percentages

(full final Python script in Appendix A.2).

5.5.2 Problems

The continuous Poisson distribution (even with a continuous factorial) does not behave

well for negative values and no longer predicts probability past 0. This is good because it

reduces our integration to

∫ ∞

−∞
P (k)dk =>

∫ ∞

0

P (k)dk = 1 (9)

which seems great for numerical computer estimation, since we can just integrate from 0 to

however many N points of precision we need to where the probabilities become small and

the total amount integrated becomes close enough to 1 (the Poisson distribution approaches

0 quite quickly, so in practice we don’t have to sample out too far to get > 99%).

However, a problem emerges in precision when we have estimate values of k between [0, 1],

as for many Poisson distributions (including the ones that closely match my results), the

slope near 0 becomes incredibly steep—probabilities near 0 do not always reach 0

smoothly, so even numeric trapezoidal integration becomes inaccurate.

When my Python script to numerically estimate the rate was initially behaving oddly, I

tested it by trapezoidally integrating my resulting Poisson distributions out to large N

(where P (N) < 10−10), and the entire distribution only summed to < 83%. This is far

lower than our goal of being almost ≈ 1, and this resulted in completely inaccurate rate
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estimations with Poisson distributions that did not give the true targeted probabilities.

5.5.3 Solutions

We remedied this problem by taking advantage of the simple integration fact that

∫ k

0

P (k)dk = 1−
∫ ∞

k

P (k)dk (10)

where we can instead just numerically compute the integral from k out to a large number

N such that P (N) becomes very small (which our trapezoidal integration is very good at).

Doing this yielded much better results when attempting to re-compute the rate results of

other FRB papers.

5.6 Target 11 Rate Results

My Python script (Appendix A.2) when given our parameters for Target 11 with k = 2

bursts gave a final rate estimate of R ≈ (0.55± 0.30) bursts hr−1, with full results below.

Target # FRBs (k) Obs. Time Center Probability Upper R Lower R
11 2 5.503 hr 68% 0.8405 hr−1 0.2499 hr−1

Table 3: Full Results for rate R estimation for the two bursts found in Target 11

where the Center Probability is the ‘goal’ probability that is in the middle of the lower

bounded:

Center Probability ≡ 1− 2(lower percentage) (11)

In my case, we wanted my rate to be within 1σ on either side of the distribution. We took

the percentage of ∼ 68% corresponding to the middle area within 1σ and computed

distributions corresponding to this area by looking for areas on either side of the middle

∼ 68%: 16% (lower percentage) and 84% (1− 16%, higher percentage). Those lower and

higher percentages are what is inputted into my script to produce the upper and lower R

14



estimates.

When comparing with results from a completely different FAST survey found by [Sheikh

et al.(2024)Sheikh, Farah, Pollak, Siemion, Chamma, Cruz, Davis, DeBoer, Gajjar, Karn,

Kittling, Lu, Masters, Premnath, Schoultz, Shumaker, Singh, & Snodgrass]:

{ 35 bursts, 541 hours, avg. burst rate [0.0776, 0.0538] },

my script outputted an upper and lower range of [0.0776, 0.0555], which is not quite exact

but is close enough to indicate that our numbers are somewhat representative and

comparable with other FAST surveys.

6 Extraction of Bursts

Previously, we took the intensity at the location of the burst produced by PRESTO and

plotted it directly from the .fits file to get an immediate idea of if we have found an

FRB. To more closely examine its structure, we should now extract the portion of data

containing the burst and turn it into a format we can fully examine and plot (here I used

matplotlib in Python).

The process of extracting the burst involves knowing the DM of the target and the MJD

(time, in seconds) of the burst. Once we have both of these, we de-disperse that portion of

the .fits file into a numpy array. Most of the logistics of this come from having to

de-disperse the data again and properly transfer over the frequency and time data properly

aligned with the observed values, but this can be done using built-in functions with the

PSRCHIVE pulsar analysis software (details of PSRCHIVE and burst extraction scripts in

Appendix A.3) [Straten et al.(2010)Straten, Manchester, Johnston, & Reynolds].

Once we have ‘cut out’ the FRB from its containing .fits file and have it in loaded into

Python (I loaded an .npz file, but anything that can store nested NumPy arrays of data will

15



work), we need to know how this FAST radio data is structured so that we can examine

the burst itself.

6.1 Stokes Parameters

The electromagnetic radiation detected by FAST that contains our FRB arrives with

polarization, which is stored by the detector and encoded into the data. The intensity of

the different components of the incoming radiation is expressed as the Stokes vector S⃗.

6.1.1 I, Q, U , V

The components of S⃗ are named the ‘Stokes parameters’, and all four together describe the

polarization of the incoming radiation:

S⃗ =



S0

S1

S2

S3


≡



I

Q

U

V


(12)

which are referred to as I, Q, U , and V , and we will need to obtain these components from

our data to determine and analyze our FRBs’ polarization.

6.1.2 XX, Y Y , (Y X)real, (Y X)imaginary

Unfortunately, our FAST data is not split up into the Stokes parameters I, Q, U , and V ,

which is ultimately what we want so that we can analyze the FRBs’ polarization. This

data is instead stored with the parameters XX, Y Y , (Y X)real, and (Y X)imaginary. These

four parameters can easily be transformed into I, Q, U , and V with the following

conversions [Straten et al.(2010)Straten, Manchester, Johnston, & Reynolds]:

I = XX + Y Y (13)
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Q = XX − Y Y (14)

U = 2 · (Y X)real (15)

V = 2 · (Y X)imaginary (16)

Later on, we will need to be careful and do some processing on the data (Subtraction &

Division) with these initial parameters first and only convert to our final I, Q, U , and V

parameters afterwards—though this will be done before we re-mask for RFI and ‘bin’ the

time and frequency resolutions into larger chunks when plotting.

6.1.3 Why Care About Polarization?

The rationale behind computing and analyzing the polarization of our FRBs primarily

comes from the motivation to find the Rotation Measure (RM) of the burst which adds the

next leading order term of the arrival time delay of our FRBs (Eq. 2). Previously, we

neglected these two terms for the purposes of large-scale searching. Now, (much like we will

do when we later more accurately remove the RFI and background noise) we can compute

this RM and use it to inform future searches and learn more about the FRB source and

how the bursts that come from it operate.

6.2 Fully Identifying the Burst

6.2.1 Simple Self-Calibration

To remove a large amount of background noise from around our burst, we can perform a

simple self-calibration process that involves subtracting and dividing the data by the ‘off

burst’ off(f), which is the average value of the intensity across time per frequency outside

of the FWHM of the burst.

offXX(f) ≡ mean[XX(t)](f) (17)
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and our new calibrated parameters become

XX(t, f) ≡ XX(t, f)− offXX(f)

offXX(f)
, Y Y (t, f) ≡ Y Y (t, f)− offY Y (f)

offY Y (f)
(18)

(Y X)r(t, f) ≡
(Y X)r(t, f)− off(Y X)r(f)√

offXX(f) · offY Y (f)
, (Y X)i(t, f) ≡

(Y X)i(t, f)− off(Y X)i(f)√
offXX(f) · offY Y (f)

(19)

where the subtraction and division is done differently for each of the four parameters, as

the polarization is expressed differently between I, Q, U , and V (which we will later

transform these parameters into).

It is also done on these parameters before converting into I, Q, U , and V because we want

to calculate the relative amplitudes of XX and Y Y separately before combining them into

I and Q—the noise levels may not be uniform between the two, so we want to remove them

such that the differences fully contribute to I and Q. We also do this before re-masking

RFI because this actually can remove low-level, noisy RFI that is uniform across

frequencies, allowing us to mask less RFI in the next step, preserving more of the burst.

This method is a simple way to greatly reduce the intensity of the background by assuming

that the background is largely unpolarized (whereas FRBs are highly polarized). This does

not remove everything but maintains the burst while removing a vast majority of the

background.

6.2.2 Masking RFI (more accurately)

Previously, we attempted to mask out the RFI before searching for bursts in PRESTO to

varying degrees of success—we were able to find our two FRBs, but amongst many false

positives that made the search and identification significantly time consuming.

Now that we have identified and confirmed our FRBs, masking out the RFI present during

the burst becomes significantly easier (and we can do so much more precisely). We will

18



first take the intensity over time of our burst and fit a Gaussian to it using

scipy.optimize. This allows us to estimate the FWHM of the burst (by computing

2
√
2 ln 2 · (standard deviation) of the fitted Gaussian), which we will use to only look for

RFI outside of the burst’s FWHM as shown below2. This allows us to easily discard any

extrema without worry of masking out our FRBs.

Figure 3: Visual Examples of Gaussian fits with FWHM estimates on bursts from Target 11

The RFI is now detected by taking the intensity across time outside of the FRB’s FWHM

for each frequency and checking to see if its variance is greater than the median (to be

more resistant to extrema) variance across all frequencies times a threshold (which you can

tune so that it removes RFI but doesn’t block out large parts of the burst, I used values

between 10 and 15). If that frequency’s variance outside of the FWHM is greater, the

entire frequency is masked out as RFI.

The ability to search outside of the burst’s FWHM and the manual tuning of the masking

threshold on a per-burst basis makes this post-discovery RFI masking more accurate and

lets us get a clearer view of the burst.

2Note that these are NOT the same as what will be later shown in the results of Section 6.3, as those
will be calibrated, RFI masked, and binned within the time window. This is just shown for a visual idea of
what will happen later, with the grey lines continuing to be an indicator of the result.
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6.2.3 Intensity ‘Waterfall’ Plot, Profile, and Spectra

Ultimately, we want to plot three subsequent items for each of the four Stokes parameters:

a 2-D colormap (‘waterfall’) of the FRB intensity that is calibrated and RFI masked, the

‘profile’, which is a sum along all frequencies measured which produces a plot of the overall

burst intensity over time, and the spectra that is summed over only the time window inside

the estimated FWHM of the burst.

Along with the spectra, it will be helpful for us later to calculate the estimated noise levels

dI, dQ, dU , and dV which are ± the standard deviations of each of their stokes parameter

counterparts.

6.3 Target 11 Stokes Plots

For each of the two bursts (and for each of their four Stokes parameters), we have the

profile and spectra to the top and right of the ‘waterfall’—with the grey dashed lines

indicating the estimated FWHM which the spectra is summed over, and the transparent

green lines around the spectra are the estimated noise levels for each of the parameters’

spectra. Note that the intensities on top are all from I, since the alternating nature of the

other three parameters means that they will not necessarily sum well into the clear

Gaussian shapes we saw previously.
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Figure 4: Profile, Waterfall, and Spectra of I, Q, U , V of the first FRB from Target 11
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Figure 5: Profile, Waterfall, and Spectra of I, Q, U , V of the second FRB from Target 11

All of these plots show the bursts much clearer than previously (Fig. 1) with better RFI

masking and background noise removal. All four of these parameters for both previously

detected bursts show clear indicators of being from FRBs just as before, and the

alternating intensity of Q and U in particular indicates that this is strongly polarized and

that we will be able to compute a clear polarization and RM from these spectra.
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7 Analysis of Bursts

7.1 Polarization

FRBs are thought to be highly polarized, and their polarization comes from the highly

magnetic environments of their sources. The polarization of our incoming FRBs can be

deduced from the differences between the four stokes parameters (for detections we are

mostly concerned with I, but for analysis we now examine the others).

Specifically, the Linear Polarization is dependent on the Stokes parameters Q, U , and I

PL ≡
√
Q+ U

I
(20)

We can also define the Faraday Dispersion Function (FDF) F (ϕ) as the Fourier Transform

of the Polarization with respect to λ2

F (ϕ) ≡ 1

π

∫ ∞

−∞
P (λ2)e2iϕλ

2

dλ2 (21)

where ϕ is the Faraday depth, which has units of Rotation Measure (which will be

convenient later). For our FRBs, we only care about λ2 where our burst is present, so

rather than integrating over the entire electromagnetic spectrum, we can introduce a

window function W (λ2) which is only non-zero inside of our frequency/wavelength range:

F̃ (ϕ) ≡ 1

π

∫ ∞

−∞
W (λ2)P (λ2)e2iϕλ

2

dλ2 (22)

this is called the “Dirty Faraday Dispersion Function” [Takahashi(2023)]. This is what we

are concerned with for finding the rotation measure of our FRBs.

We can then produce P (λ2) (and thus F̃ (ϕ)) with our spectra Q(f), U(f), and I(f) (using

Eq. 20), which can easily be converted from being functions of frequency f to λ2 in
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software.

7.2 Rotation Measure (RM)

The Rotation Measure (RM) of the burst is proportional to the slope of the Polarization

Spectrum P (λ2),

RM(λ2) ≡ 1

2

d

dλ2
[arg(P (λ2))] (23)

so for a constant RM value, we are looking for a consistent slope across the wavelengths of

our burst. Fortunately, the RM value is also expressed as a peak ϕ0 in the Dirty FDF F̃ (ϕ).

For analysis we should visually look for both slopes in P (λ2) and a clear peak in F̃ (ϕ) to

confirm that the value for RM that our RM-Tools software3 gives us is accurate.

Once again, the RM adds to the next leading order term after DM for the arrival time

delay of the burst (Eq. 2), so finding the RM and analyzing its consistency tells us more

about the details of the delays we should expect from an FRB source (which is more well

informed as we have more bursts to analyze).

7.3 Target 11 Polarization and RM Results

The Spectra of Q, U , and I trimmed around the bursts’ active frequencies (activity clearly

beyond the noise threshold seen in the previous plots) fed into RM-Tools (Appendix A.3)

with the plotting -p option. We also fed in the estimated noise levels dQ, dU , and dI,

which gives us the error bars on the plots as well as outputting the estimated RM error.

3RM-Tools can be found at [Purcell et al.(2020)Purcell, Van Eck, West, Sun, & Gaensler], and commands
used can be found in Appendix A.1.2
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Figure 6: Plots of Polarization Angle v. Wavelength2 for both bursts

For the first burst from Target 11, we see the negative slope is very clear within the

wavelengths where the burst is present—we do not need the “downward lines” of points to

be continuous (as it is split into two here), the important thing is that the slope is

consistent. The first burst looks very linearly sloped downwards, and the second burst is is

less clear (possibly due to it being more narrow-banded compared to the first burst, giving

it fewer data points) but is still prominently sloped downwards in two sections similar to

the first.
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Figure 7: Plots of Dirty Faraday Dispersion Function for both bursts

In both Dirty FDF plots, we see clear peaks near the values proportional to the slopes of

the previous two plots (rather than the highest peak at 0, which is indicative of

unpolarized noise). This time, the second burst’s Dirty FDF has a much clearer peak than

the first; however, both are significant enough that—combined with the previous plots of

P (λ2)—we can be reasonably sure that our RM values are representative of these bursts.

Below are the full RM outputs as we calculated with RM-Tools (Appendix A.1.2) in

accordance with the plots and conclusions above.
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Burst # Target Date Time (UT) Fitted RM RM Error
1 11 2021-10-20 03:12:10.824 -268.123 2.534
2 11 2022-01-08 22:28:02.530 -531.638 1.186

Table 4: List of found bursts from Target 11 with locations, times, and fitted RM parameters

Additionally, in both of the Dirty FDF plots, the Real and Imaginary components are

prominently different under the peak at the RM value, indicating that these FRBs are

highly polarized and that our assessment of RM is legitimate for these bursts.

We might initially be surprised that (as seen in Table 4) our RM for the second burst

(−531.638) is nearly double that of the first burst (−268.123). As an FRB source, Target

11 is known to have a fast-varying RM because it is in a very magneto-active environment

which may cause it to change quickly.

8 Conclusion

Since the previous project, we have expanded our FRB search to broader detection timing

windows, estimated Target 11’s rate when observed with FAST, showcased our bursts in all

four Stokes parameters with improved background noise and RFI reduction, and

determined the polarization of our bursts leading to an estimate of their Rotation

Measures. While some of these tasks were unsuccessful, the prominence of these bursts’

polarization provided a very strong result for the RM and supported the idea that Target

11 is a highly magneto-active environment causing not only strongly polarized bursts but

also can have a largely variant RM between bursts.

8.1 Future Steps

In the future, the next steps would be to continue to search for more FRBs with PRESTO

(which we now have a full pipeline to process and analyze) for the remaining targets we did
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not initially scan, as well as further compare our rate estimates with other papers to

confirm my method for estimating the Poisson statistics. Additional steps for these two

bursts might be to estimate the EM for the fourth-order term of the time-delay 2 or to try

and remove any low-level RFI that may be still remnant in these bursts to get more

accurate measurements—some of the Stokes parameter plots (in section 6.3) still appear to

have elevated noise that is uniform across frequency bands, which is indicative of RFI.
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A Appendix

A.1 Code Commands Used

Previous Burst Search commands with PRESTO [Amiri et al.(2020)Amiri,

Andersen, Bandura, & The CHIME/FRB Collaboration*]

Search your .fits file for prominent RFI with rfifind

rfifind -time 2.0 -o Lband /fitsfiles/Target_XX_tracking -M01_XXXX.fits

which will create a .mask file that tries to mask over any detected RFI

Next, prepare the data for de-dispersion by creating a topocentric, DM = 0 timeseries with

prepdata

prepdata -psrfits -noscales -nooffsets -nobary -zerodm -downsamp 1 -dm XXX

.XX -o Lband_rfifind.mask /fitsfiles/Target_XX_tracking -M01_XXXX.fits

which will output as a .dat file

Create a Fast Fourier Transform of the timeseries

realfft Lband_rfifind.mask.dat

whose output can inform what parameters you use in the next step.

De-disperse the data with prepsubband

prepsubband -nsub 64 -dmstep 1.00 -lodm XXX.X -numdms 1 -downsamp 1 -

nobary -psrfits -o Lband_rfifind.mask /fitsfiles/Target_XX_tracking -

M01_XXXX.fits

which will output a new de-dispersed .dat file

Search the outputted .dat file for single pulses

single_pulse_search.py -b Lband_rfifind.mask_DMXXX.XX.dat

which can be filtered through to find possible FRBs.
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A.1.1 Variable Window Search

Searching the data for single pulses in PRESTO with variable window by adding the -m

flag:

single_pulse_search.py -b Lband_rfifind.mask_DMXXX.XX.dat -m 10

where 10 should be replaced with your window (ms).

A.1.2 RM-Tools [Purcell et al.(2020)Purcell, Van Eck, West, Sun, & Gaensler]

To perform RM Synthesis, you should have a .dat file which contains ASCII formatted

columns corresponding to: { f (in Hz), I, Q, U , dI, dQ, dU }

Then you execute the do RMsynth 1D.py script (currently it only works in Python 2) with

your .dat file as its argument

python2 do_RMsynth_1D.py list.dat -p

where the -p flag produces plots after the output.

To find the RM and dRM estimates, open the text of the newly outputted

list RMsynth.dat file

cat list_RMsynth.dat

and look for the values of phiPeakPIchan rm2 (RM) and dPhiPeakPIchan rm2 (dRM).

A.2 Rate Estimation Script
#!/ usr /bin /env python3

r e s o l u t i on mu l t = 100

import sys

import numpy as np

import matp lo t l ib . pyplot as p l t

from sc ipy . s p e c i a l import f a c t o r i a l

k = in t ( sys . argv [ 1 ] )

p e r c en t goa l = f l o a t ( sys . argv [ 2 ] )

sample t ime = f l o a t ( sys . argv [ 3 ] ) # ( in hours )

de f n ew i n t e g r a t e p o i s s i o n t o k ( rt , k , n) :
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re turn np . sum( po i s son ( rt , np . l i n s pa c e (0 , n , n + 1) ) [ : k+1])

de f po i s son ( rt , k ) :

exp = np . exp(−1 ∗ r t )

powr = np . power ( rt , k )

f a c t = f a c t o r i a l ( k )

value = ( exp ∗ powr ) / f a c t

re turn value

de f f i n d c l o s e s t r t ( t a rg e t pe r c en t , i n t e g r a l v r t , r t l i s t ) :

index = np . argmin (np . abs ( i n t e g r a l v r t − t a r g e t p e r c en t ) )

c l o s e s t p e r c e n t = i n t e g r a l v r t [ index ]

r t = r t l i s t [ index ]

re turn rt , c l o s e s t p e r c e n t

n = 50

r t r e s mu l t = 2 ∗ 100

rt max = 50

r t l i s t = np . l i n s pa c e (0 , rt max , rt max ∗ r t r e s mu l t )

p r in t ( ’ Ca l cu la t ing p o s s i b l e r a t e s with about ’ , 100 ∗ percent goa l , ’ percent be f o r e k =’ , s t r ( k ) , ’ with a

r e s o l u t i o n o f ’ , 1/(10∗ r e s o l u t i on mu l t ) )

p r in t ( ’Over ’ , s t r ( sample t ime ) , ’ hours ’ )

p r in t ( ’ ’ )

p r i n t ( ’ . . . ’ )

i n t e g r a l u p t o k v r t = [ ]

f o r r t v a l u e in r t l i s t :

i n t e g r a l u p t o k v r t . append ( n ew i n t e g r a t e p o i s s i o n t o k ( r t va lue , k , n) )

i n t e g r a l u p t o k v r t = np . array ( i n t e g r a l u p t o k v r t )

p r in t ( ’ . . . ’ )

p r i n t ( ’ ’ )

r t r e s u l t , p e r c e n t r e s u l t = f i n d c l o s e s t r t ( pe rcent goa l , i n t e g r a l u p t o k v r t , r t l i s t )

p r in t ( ’ C lo s e s t ( Rate ∗ time ) : ’ , s t r ( r t r e s u l t ) )

p r in t ( ’Which g i v e s a percentage o f : ’ , s t r ( p e r c e n t r e s u l t ) )

p r in t ( ’ ’ )

r a t e r e s u l t = r t r e s u l t / sample t ime

pr in t ( ’ F ina l Rate : ’ , s t r ( r a t e r e s u l t ) , ’ bur s t s / hour ( same un i t s as time was entered ) ’ )

which is ran as

python estimate_rate_poisson_k.py 2 0.16 5.503

where the three arguments are k, the target percentage up to k (which is = 1− percentage

after), and the total observing time (in hours).
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A.3 Burst Extraction Scripts

The burst extraction is split into three scripts (two of them are ran directly, and one uses

functions that depends on the the third), and are ran as follows:

Slice out the burst using slice dd v5 single.py

python slice_dd_v5_single.py --info new_directory/burstmjd.txt fitsfiles/

FAST/Target_11 /202 XXXXX/Target_XX_tracking -M01_XXXX.fits

which takes in a text file burstmjd.txt that contains the MJD and DM of the burst

Convert the .ddar file produced by the previous script into a Python-readable format

using get int data py3.py

python get_int_data_py3.py

which will output an .npz file that can be easily read into Python as NumPy arrays. Note

that get int data py3.py does NOT take in any arguments, you must instead edit the file

manually to change the folder containing the .ddar and other parameters.

More information and links to download the scripts can be found at

https://dzliprojects.wiki/index.php/User:Xanderjenkin#Burst_Cutting_Scripts
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A.4 Target Lists

Table 5: List of FRB sources requested for this FAST survey (pulled from our proposal).
Not all of the hours requested were observed, so the total time of our survey is less than the
sum of the times listed above, and not all of the data surveyed was analyzed (see Table 2
for hours and sources which were scanned for bursts).
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Table 6: Full list of parameters for the proposed FRB sources. In this project, Targets 2, 3,
4, 11, and 12 were scanned for FRBs (more details in Table 2 The DMex = DM−DMISM −
DMMWhalo, while assuming that the Milky Way halo contribution is DMMWhalo = 30 pc
cm−3. If the FRB from the source has ||RM || > 400 rad m−2, the RM (Faraday rotation
measure) column is labelled with ‘L’. Definitions for RM and EM (emission measure) are
included later on with the full time-delay t(ν) (Eq. 2).

A.5 Variable Window Search Table

Target # Significance default window 1ms 10ms 100ms 1000ms
2 > 13σ 6 32 32 32 32
2 > 15σ 0 5 5 5 5
4 > 9σ 4 4 4 4 4
11 > 9σ 24 55 55 55 55
11 > 11σ 3 11 11 11 11
12 > 6σ 8 13 13 13 13
12 > 8σ 1 1 1 1 1

Table 7: List of detected single pulses per target above specified Signal/Noise ratio signifi-
cances using variable detection windows. Our goal was to see new detections > 10σ (which
most of the sources did not have) and visually inspect the highest peaks for FRBs.
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